

eRHIC Machine Collaboration

BNL:

L.Ahrens, M.Bai, J.Beebe-wang, I.Ben-Zvi, M.Blaskiewicz, M.Brennan, A.Deshpande, A.Fedotov, W.Fischer, J.Kewisch, V.Litvinenko, W.MacKay, C.Montag, B.Parker, S.Peggs, V.Ptitsyn, B.Surrow, T.Roser, S.Tepikian, D.Trbojevic, S.Y.Zhang

MIT-Bates :

M.Farkhondeh, W.Franklin, W.Graves, R.Milner, C.Tschalaer, J.B. van der Laan, F.Wang, D.Wang, A.Zolfagari, T.Zwart

- BINP, Russia: A.V.Otboev, Yu.M.Shatunov
- DESY, Germany: D.P.Barber

Design areas:

- 1 MIT-Bates: Electron injector and electron ring development
- 1 BNL: Interaction region and ion ring upgrades

Project scope and goals

- Experiments with electron-proton and electron-ion collisions.
- Should be able to provide the beams in following energy ranges:
 - 5-10 GeV polarized electrons;10 GeV polarized positrons
 - 25-250 GeV polarized protons;100 GeV/u gold ions
- Other ion species, especially polarized ³He ions are under consideration.
- Luminosities:
 - in 10³² 10³³ cm⁻²s⁻¹ region for e-p
 - in 10³⁰ 10³¹ cm⁻²s⁻¹ region for e-Au collisions
- 70% polarization degree for both lepton and proton beams
 - Longitudinal polarization in the collision point for both lepton and proton beams

Main design line

The design is being developed involving scientists from BNL, MIT-Bates, BINP (Russia) and DESY(Germany).

- The electron ring of 1/3 of the RHIC ion ring circumference
- Full energy injection using polarized electron source and 10 GeV energy linac.
- e-ion collisions are in one interaction point.
 But should allow for ion-ion collisions in two other IPs at the same time.
- The beams with matched electron and ion beam sizes at the IP.
- Longitudinal polarization produced by local spin rotators in interaction regions.

Luminosity considerations

Luminosity limitation comes from beam-beam effects and from interaction region magnet aperture:

$$L = f_c \frac{\pi \gamma_i \gamma_e}{r_i r_e} \xi_{xi} \xi_{ye} \sigma'_{xi} \sigma'_{ye} \frac{(1+K)^2}{K}$$

Beam-beam limits (from world experience, RHIC operation experience and initial beam-beam simulation results):

$$\xi_e < 0.08$$
, $\xi_i < 0.02$ (total from all collision points)

- From interaction region design :
 - $\sigma_i' \le 95 \,\mu\text{rad}$ and $K=1/2 \,(\sigma_V/\sigma_X)$ beam size ratio; elliptical beams)
- $f_c = 28.15 \, \text{MHz}$: 360 bunches in the ion ring, 120 bunches in the electron ring

Basic beam parameters for e-p collisions

	High energy	y setup	Low energy setup	
	p	e	p	e
Energy, Gev	250	10	50	5
Bunch intensity, 10 ¹¹	1	1	1	1
Ion normalized emittance, π mm.mrad, x/y	15/15		5/5	
rms emittance, nm, x/y	9.5/9.5	53/9.5	16.1/16.1	85/38
beta*, cm, x/y	108/27	19/27	186/46	35/20
beam-beam parameters, x/y	0.0065/0.00325	0.029/0.08	0.019/0.0095	0.036/0.04
$\kappa = \varepsilon_{y}/\varepsilon_{x}$	1	0.18	1	0.45
Luminosity, 1e32, cm ⁻² s ⁻¹	4.4		1.5	

No cooling 2 p-p IPs assumed Cooling needed
No p-p IPs allowed

Basic beam parameters for e-Au collisions

	High energ	y setup	Low energy setup		
	Au	e	Au	e	
Energy, Gev/u	100	10	100	5	
Bunch intensity, 10 ¹¹	0.01	1	0.45	1	
Ion normalized emittance, π mm, x/y	6/6		6/6		
rms emittance, nm, x/y	9.5/9.5	54/7.5	9.5/9.5	54/13.5	
beta*, cm, x/y	108/27	19/34	108/27	19/19	
beam-beam parameters, x/y	0.0065/0.00325	0.0224/0.08	0.0065/0.00325	0.02/0.04	
$\kappa = \varepsilon_{y}/\varepsilon_{x}$	1	0.14	1	0.25	
Luminosity, 1e30, cm ⁻² s ⁻¹	4.4		2.0		

Electron cooling of Au beam is required to achieve and maintain listed Au emittance values

Electron ring issues

Flexible emittance control.

The lattice should provide variable electron emittance in the range:

30-130 mm.mrad in dependence on collision energy setup.

Chromaticity corrections and high dynamic aperture in all emittance range.

Synchrotron radiation power accommodation

Total radiated power ~ 5 MW

Power load/m ~ 9.5 kW

(at the level of existing PEP B-factory)

Vacuum chamber design;

Variable ring circumference.

ΔC up to 20 cm is needed to match the proton revolution frequency at different proton enrgies.

Polarization optimization.

Minimization of depolarizing effect of spin resonances for electrons (HERA experience)

Self-polarization for 10 GeV positrons (~22min polarization time)

Parameters of current e-ring lattice

(from F.Wang, MIT-Bates)

	ZDR1.0-10GeV	2003	ZDR1.0-5GeV	2003	e-RHIC 02(sup. B)	SLAC HER	KEKB HER
Circumfe rence (m)		1277.91		1277.91	958.65	2200.00	3016.26
Energy (GeV)		10		5	10	9	8
Bending radius(m)		81.0162		81.0162	58	165	88.95
Bunch Spacing (ns)		35.52		35.52	35.71	16.8/8.4/4.2	1.97
Bunch spacing(m)		10.65		10.65	10.71	1.26	0.59
Number of bunches		120.00		120.00	90.00	415/831/1658	5000
Bunch population		1.00E+11		1.00E+11	1.00E+11		1.40E+10
Beam current(A)		0.45		0.45	0.45	3.00	1.1
Arc Cell	FODO		FODO		FODO	FODO	2.5π Cell noninterle
Harmonic Number		2028		2028	1169	3492	5120
RF frequency MHz		475.8		475.8	365.7	476	508.9
Energy loss/turn (MeV)		11.44		0.72	15.26	3.52	3.5
					(+supper B) 21.26		
Accelarting voltage(MV)		30		10	30	14	20
Synchrotron tune		0.04		0.034		0.0449	0.011
Total rad. Power(MW)		5.13		0.32	9.57(with S.B)	10.56	3.85
Syn. Rad. Power/m (KW) in Arc		9.63		0.60	18.78	10.19	6.89
from normal bend							
Self-pola. Time at 10GeV(minutes)		22.03		704.85	8.47		
Emittance-x, no coupling (n m.rad)		30.7		93.8	65	49	25
Beta function at IP (cm) y/x		10./10		10./10	10./10	1.5/50	1./33
Round Beam size at IP(um)		38.73		67.08	57.01		
Momentum compaction a		1.79E-03		9.12E-03			2.00E-04
Momentum spread		9.53E-04		4.76E-04	1.60E-03	6.00E-04	6.70E-04
Bunch length (cm)		1.72		3.2	2	1.1	0.4
S.R. damping time(x) (mS)		7.4		58.6	4.2	37.7	23
Beta tune Ux		30.579		17.808	27.48	24.62	44.51
Beta tune Uy		28.649		15.722	21.9	23.64	42.29
Natural chromaticity x,y	30nm: x=-61.80,	y=-56.388	90nm: x=-44.86	y=-35.89	x=-76, y=-53		

Injector system design

Polarized electron source + 2x5 GeV acceleration linac + positron production system

Required ion ring upgrades

- Increasing number of bunches (n_b) from 60-120 to 360 bunches
 - Systems development needed:
 - 1 Faster injection kicker (~20 ns risetime) OR
 - 1 RF Manipulation (barrier bucket cavity and bunch merging) in RHIC
 - Physical limitations to be studied and overcomed:
 - Vacuum pressure rise, electron cloud. Remedies:
 - NEG coating; vacuum chamber baking; using solenoids; beam scrubbing;
 - Long range beam-beam effects (issue for beam separation scheme).
 - Abort system upgrade
 - 1 Cryogenic load; Beam instabilities; RF Loading

Beam cooling

- 1 Transverse electron cooling for Au to reach the required emittance (and luminosity) value.
- 1 Transverse cooling for protons at energies below 150 GeV needed.
- Longitudinal cooling to reach shorter rms bunch length (<20cm).

Interaction region scheme

- Horizontal e-ion beam separation;
 vertical ion-ion rings separation.
- Head-on collisions.
- The scheme avoids parasitic beam-beam collisions.
- Flat e-ring suitable for polarization preservation.
- Synchrotron radiation issues:
 - detector background
 - 1 IR magnet protection

Interaction region design appeared to be crucial subject. Puts limits on the luminosity that can be achieved. C.Montag's talk in afternoon.

Electron beam polarization

Depolarizing spin resonances are present due to betatron motion and closed orbit errors. Correct choice of betatron tunes; Spin resonance harmonic correction system (HERA like)

Spin rotators

e-ring: solenoidal spin rotator -> simplest solution (BINP design)

- Perfect longitudinal polarization at 7.5GeV
 ~15% reduction at 5 or 10 GeV.
- Spin transparency conditions on optics
- ~50 Tm longitudinal field integral at 10 GeV

p-ring:

Helical spin rotator like being used already at two RHIC experiments

Linac-Ring Option

Electron beam is brought to collision point directly from superconducting energy recovery linac.
500mA electron current; 10 GeV energy.
Possible design for eRHIC is under consideration
(I.Ben-Zvi's group)

- No beam-beam limitation for electron beam
- Simpler polarization handling
- Simpler interaction region design

Things to be resolved:

- Development of high current polarized electron source needed
- Development of energy recovery technology for high energy and high current beams

Summary

- The main design is based on the construction of 5-10GeV electron ring and 10 GeV linac for full energy injection.
- Polarized e-p and unpolarized e-ion beam collisions in the center of mass energy range of 20-100 Gev and at luminosities above 10³² cm⁻²s⁻¹ for e-p and 10³⁰ cm⁻²s⁻¹ for e-Au collisions.
- The collider design could be realized using the present level of the accelerator technology.
- Major challenges: increasing ion current (number of bunches) in ion ring and synchrotron power load accommodation for electron ring.
- Alternative design developments:
 - Using energy recovery electron linac (without the e-ring)
 - Self-polarizing ramping e-ring (without full energy linac and polarized source).
- Project ZDR in January 2004